XEM: An explainable-by-design ensemble method for multivariate time series classification

نویسندگان

چکیده

We present XEM, an eXplainable-by-design Ensemble method for Multivariate time series classification. XEM relies on a new hybrid ensemble that combines explicit boosting-bagging approach to handle the bias-variance trade-off faced by machine learning models and implicit divide-and-conquer individualize classifier errors different parts of training data. Our evaluation shows outperforms state-of-the-art MTS classifiers public UEA datasets. Furthermore, provides faithful explainability-by-design manifests robust performance when with challenges arising from continuous data collection (different length, missing noise).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate LSTM-FCNs for Time Series Classification

Over the past decade, multivariate time series classification has been receiving a lot of attention. We propose augmenting the existing univariate time series classification models, LSTM-FCN and ALSTM-FCN with a squeeze and excitation block to further improve performance. Our proposed models outperform most of the state of the art models while requiring minimum preprocessing. The proposed model...

متن کامل

Multivariate Time Series Prediction via Temporal Classification

One of the important problems in many process industries is how to predict the occurrence of abnormal situations ahead of time in a multivariate time series environment. For example, in an oil refinery, hundreds of sensors (process variables) are installed at different sections of a process unit. These sensors constantly monitor the development of every stage of the process. Typically, each pro...

متن کامل

Multivariate Time Series Classification with WEASEL+MUSE

Multivariate time series (MTS) arise when multiple interconnected sensors record data over time. Dealing with this high-dimensional data is challenging for every classifier for at least two aspects: First, a MTS is not only characterized by individual feature values, but also by the co-occurrence of features in different dimensions. Second, this typically adds large amounts of irrelevant data a...

متن کامل

Multivariate Time Series Classification with Temporal Abstractions

The increase in the number of complex temporal datasets collected today has prompted the development of methods that extend classical machine learning and data mining methods to time-series data. This work focuses on methods for multivariate time-series classification. Time series classification is a challenging problem mostly because the number of temporal features that describe the data and a...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data Mining and Knowledge Discovery

سال: 2022

ISSN: ['1573-756X', '1384-5810']

DOI: https://doi.org/10.1007/s10618-022-00823-6